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The stability of a steady, laminar, immiscible, dense line plume falling through a fluid 
whose horizontal extent is much larger than the plume thickness is investigated. It 
is shown analytically that the primary flow is linearly unstable in the limit of large 
wavelength and, if surface tension is negligible, is also unstable in the limit of small 
Reynolds number. A rich variety of modes of perturbation exist, characterized by 
a range of balances on different lengthscales between diffusion, advection and 
propagation of vorticity. 

1. Introduction 
We consider the stability of the two-dimensional flow due to the steady fall of a 

narrow, laminar line plume through a fluid of large horizontal extent. The two fluids 
have different densities and viscosities and are considered to be incompressible and 
immiscible. We concentrate on long-wavelength disturbances to the primary flow 
noting that the short-wavelength instability (Hooper & Boyd 1983) has been shown 
to have a negligibly small growth rate (Hinch 1984). We also note that instability 
has been experimentally observed in the axisymmetric case at wavelengths much 
longer than the plume thickness (Huppert et al. 1986). 

Previous authors (Yih 1963; Yih 1967; Hickox 1971 ; Joseph, Renardy & Renardy 
1984) have considered the stability at long wavelengths of other two-fluid Couette 
or Poiseuille flows and have shown that interfacial instability persists at arbitrarily 
small Reynolds number. However, their basic flows were bounded by rigid walls close 
to the interface and their analyses break down in the case considered here - that of 
boundaries distant from the interface. The stability of plane Couette flow of two 
semi-infinite layers has been analysed by Hooper & Boyd (1983). They found that 
the flow was unstable to short-wavelength disturbances but stable to long 
wavelengths. Hooper (1985) has extended this work to show that Couette flow of a 
semi-infinite layer and a finite layer bounded by a rigid wall is unstable to long 
wavelengths if the finite layer has the greater viscosity. 

The release of a buoyant fluid into a large reservoir of stagnant fluid occurs 
naturally in replenished magma chambers and has been investigated experimentally 
by Huppert et al. (1986). Our results are relevant in this context and to any other 
similar ‘nearly unbounded’ two-fluid flows. The analysis will show that both the 
distant nature of the boundaries and the lengthscale imposed by the plume width 
play an important role in the stability problem. 

The basic flow is described.in $2. The linear stability problem for this flow is 
formulated in $3. The resulting differential equation and boundary conditions for the 
stream function constitute an eigenvalue problem for the complex wave speed. 
Solutions are presented in $94 and 5 for both varicose and meandering disturbances 
in each of the limits of small wavelength and of small Reynolds number showing that 
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instability of some form will always occur. A description of the physical mechanisms 
of propagation and growth of disturbances at small Reynolds number is contained 
within the analysis of 55. The results for this problem and the analogous problem 
for the stability of a three-dimensional axisymmetric .plume are discussed in 56. 

2. The primary flow 
The basic-flow configuration is sketched in figure 1. A dense fluid in --a < r < a 

of density pi and kinematic viscosity vi falls through a fluid of density po and 
kinematic viscosity vo, driven by the density difference. The flow is bounded by rigid 
walls a t  r = f A .  We suppose that the flux of dense fluid in the plume is 2Q and that 
the modified pressure gradient, -gp+ aP/ax, is pi Ki within the plume and po KO 
outside the plume. We assume that there is no variation in time or in the axial 
direction x, and seek the steady fluid velocity U(r)  and the plume width 2a. 

The release of dense fluid into - A  < r < A will initially produce a time-dependent 
and axially varying flow. This flow, however, will approach a steady, parallel, shear 
flow as vorticity diffuses to the walls. We concentrate on the simple case of the 
stability of the ultimate steady state in order to elucidate general instability 
mechanisms applicable to more complicated flows. 

Application of the Navier-Stokes equations, the no-slip boundary condition a t  the 
rigid wall and continuity of velocity and tangential stress at the interface, together 
with the use of symmetry, gives 

[pvU'(a)]? = 0, Udr = Q and U'(0) = 0, J: 
where [ 1' denotes the interfacial jump from values at r = a- to r = a,. 

The solution to these equations is 

where 

k 
U(r)  = t~ (m-l-k) ( r - A ) + - ( r 2 - A 2  1 2a 

(m-'-k) ( a - A ) + - ( u z - A 2 ) + - ( r z - u 2 ) ]  k B ( r  < a ) ,  
2a 2a 

We can also show that 
Ki( l -mk)  = -g',  

where 

The problem is then closed by specification of the remaining unknown k .  One 
natural condition to impose is that the pressure gradient in the large body of external 
fluid is hydrostatic. This requires k = 0. Alternatively we could desire zero net flux 
across a cross-section for which we need only the leading-order condition in u / A  4 1. 
This is k = - (3/2m) ( a / A ) .  

The plume thickness is determined by the requirement that the flux of buoyant 
fluid be 2Q, as specified by (2.1 e ) .  In many cases of natural interest the densities of 
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FIQURE 1. Definition sketch for the basic flow. A dense fluid falls in a line plume of thickness 
2a through another fluid bounded by parallel rigid walls a distance 2A apart. 

the two fluids will be nearly equal and m % 1 .  We put m = 1 for simplicity and use 
(2.2)-(2.5) to obtain 

(1  - k) [;- A 11 ++k [2- A2 11 + $3 = --$ QV ( 1  - k). 

If the exterior pressure gradient is hydrostatic (k = 0), and if A9 P Qvo/g’ and thus 
a / A  < 1, then (2.6) becomes 

a x [$I. (2.7) 

Alternatively, if a return flow ensures that there is no net volume flux (k = -3a/2A), 
the same approximations yield 

Note the surprising feature that even a small return flow can double the plume width 
produced by a given buoyant flux Q. The form of (2.7) and (2.8), though not the 
numerical coefficients, could be deduced by observing that in a steady state the 
buoyancy force, O@g’a), acting on the plume must be balanced by the shear stress 
in the outer fluid, O(po Q/aA). 

3. The differential system governing stability 
In this section we allow a small perturbation velocity u = (u, w )  to disturb the basic 

We first make the problem dimensionless by scaling all lengths by a, velocities by 
flow U = (U, 0) described in $2. 

m, densities by po and viscosities by v,. We define a Reynolds number by 

ua2 R = -  
VO 

and a capillary number by 
r=- Y 

Po vo aa ’ 

( 3 . 1 ~ )  

(3.1 b)  
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where y is the coefficient of interfacial tension between the two liquids. We change 
to a frame of reference in which the interface is stationary so that in dimensionless 
form the basic flow described in $2 becomes 

8= (rn-l-k)(r-l)+~k(r2-1), p = I ,  v = I ,  ( r >  I ) ,  ( 3 . 2 ~ )  

B=&?(r2-1), p = rn-l, v = /3-l, ( r  < 1). (3.2b) 

We look for normal modes of perturbation to this flow in which all quantities are 
products of eia(z-ct) and a function of r.  The fluids are considered to be incompressible 
and so u can be represented by 

= (D$, -ia$) eia(z-ct) (3.3) 

where D = d/dr. Substitution into the curl of the Navier-Stokes equation, linearized 
about the basic state, leads to the well-known Orr-Somerfeld equation 

V ( D ~ - ~ ~ ) ~ $  = iaR[(8-c)  (D2-a2)$- l7"$]. (3.4a) 

The symmetry of the basic-flow geometry leads to the invariance of ( 3 . 4 ~ )  under 
r+-r and allows us to seek even or odd solutions for $, corresponding to meandering 
or varicose perturbations of the interface respectively. Thus either 

or 
D$(O) = D 3 ~ ( 0 )  = 0 (meanders only) (3.4b) 

$ ( O )  = D2$(0) = 0 (varicose only). (3.4c) 

The boundary conditions at the rigid wall require 

$(A) = D$(A) = 0. (3.4d) 

The remaining boundary conditions arise from linearized equations for the 
continuity of the two components of velocity and stress at the interface. The 
continuity of radial velocity, axial velocity and tangential stress respectively imply 
that 

[$I? = 0. (3.4e) 

[D$+$8']: = 0, (3.4.f 1 

(3.49) 

The jump in the normal component of hydrodynamic stress must be balanced by 
surface tension. After some manipulation we obtain 

bv(D2-3a2)D$]+ = ira3' iaR(cD$ + 8'$) (1 - rn-l), (3.4h) 
C 

where [ 32 denotes the jump from values a t  r = 1- to values at r = 1,. The derivation 
is given in Yih (1967), though (3.4g) differs from the analogous equations in previous 
work owing to the driving pressure gradient in the descending fluid. 

Equations (3.4~-h) form an eigenvalue problem for c as a function of the 
dimensionless parameters R, r, rn, 8, A and a and there is instability if c has a positive 
imaginary part for some a. 

With six independent parameters to consider, i t  is necessary to make approxima- 
tions in order to make further progress. Previous authors (Hickox 1971 ; Joseph et ul. 
1984) have obtained results for axisymmetric plumes which are valid as a+O with 
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A fixed and comparable with the plume width. Their results break down in the case 
we are interested in here : that in which A is very large and the variations on length- 
scales a-l, implicit in the operator D2 -a2, are important. For the sake of definiteness 
in the joint limit A + m ,  a+O, we formally put A = 00 in (3.6d) and hence, from 
$2, k = 0 in ( 3 . 2 ~ ) .  

The removal of the boundary conditions (3.6d) to infinity is equivalent to the 
selection of the exponentially decaying solutions of ( 3 . 4 ~ )  ; the growing solutions will 
have an exponentially small coefficient and will make a negligible contribution to the 
jump conditions (3.4eh) and the growth rate c. The approximation of the basic-flow 
profile is valid on the lengthscale a-l of the disturbance flow field when aA >> 1 as 
considered here. We note, also, that the time taken to set up the steady state whose 
stability is under consideration will increase with A. However, if our analysis predicts 
instability then we know that a line plume will ultimately become unstable. At 
sufficiently large times the basic flow may be treated as quasi-steady and our analysis 
applied. Moreover, even if the time taken to attain a steady state is large, we expect 
that the instability mechanisms for the steady state will also apply to  the transient 
time-dependent flow. 

As commented earlier, the densities of the two fluids will often be nearly equal and 
thus m x 1. It is possible to retain a general value of m throughout the following 
analysis but it is found that this merely complicates the algebra without changing 
the number or stability of any of the modes of perturbation. The approximation 
rn = 1, corresponding to the Boussinesq approximation, will thus be made for 
simplicity, the errors involved being O(m- 1). The intention of this approximation 
is to ignore the unnecessary complications of the inertial effects of the density 
difference between the fluids; the buoyancy effects of the density difference drive the 
basic flow and cannot be ignored. The imposition of m = 1 should, therefore, only 
be made in (3.2) and (3.4) and should not be taken to imply anything about the 
strength of the basic flow or the values of CT, R and r. 

In $4 we consider the limit a+O and in $5 we consider the limit R+O. 

4. Solutions valid as a+O 

the approximations A = 0, k = 0, m = 1. Specifically, we solve 
In this section we present solutions to (3.2) and (3.4) that are valid as a+O under 

v ( D ~ - ~ ~ ) ~ @  = iaR[(&/Y(r2-l)-c)(D2-a2)@-p$] ( r  < l),  ( 4 . 1 ~ )  

(D2-a2)2@ = i a R ( r - l - c ) ( D 2 - a z ) $  ( r  > I ) ,  (4.1 b )  

$ + O  as r+m,  (4.2) 

@ ( O )  = DZ$(0) = 0 (varicose only), ( 4 . 3 ~ )  

D@(O) = D3$(0) = 0 (meanders only), (4.3b) 

( 4 . 4 ~ )  

(4.4b) 

(4.44 

(4.4d) 
$ 9  

iru3 
[v(D2-3a2)D$]? = -- 

C 

with w = 1 in r > 1 and w =p-' in r < 1. 
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We expand @ and c as asymptotic series in powers of a and solve (4.1) a t  successive 
orders. It is found that (4.1) has different asymptotic forms when r = 0(1), when 
ar = O( 1) and possibly when at r = O( 1). The eigenvalue c is determined by matching 
the different solutions for @ and applying (4.2)-(4.4). Two possible expansions are 
given for meandering instability and one for varicose instability. 

Surface tension will only be important if it is very large (r = O(a3)) and it is more 
realistic to assume that r = O(1). As we would expect, surface tension then plays 
no role in these long-wavelength instabilities. 

4.1. A varicose perturbation with c = O(a-)) 
Pose 

and let q = r -  1 ,  s = ai(r- l ) ,  t = a(r-  1).  
Substituting into (4.1 b), we obtain 

-- d2@0 d4$ 
da4 dq2 

- -a; iRc-, -+ O(a), 

iR(s - a4 c)] $ = ~ ( a i ) ,  
d2 
[a- 

[& 1 1  @ = O(a2). 

( 4 . 7 ~ )  

(4.7 b)  

(4.7c) 

Thus, under the ansatz (4.5) and (4.6), we see from equations (4.7) that the flow 
divides into three regions : on lengthscales O( 1)  only diffusion of disturbance vorticity 
is important; on lengthscales O(a-l) only advection by the mean flow is important; 
and in a region where r = O(a-4) there is a balance between diffusion and advection. 

In  the region r = O(a- l ) ,  ( 4 . 7 ~ )  is easily solved subject to the boundary condition 
(4.2). Since the whole problem is homogeneous in @ we can write, without loss of 

(4.8) 
generality, q2(t) = e-t + O(a2), 

In the region r = O(a-t),  (4.7b) can be solved at leading orders to give 

% = B, Ai[eKi/618(s-a~~)]+C~Ai[e5Ki~eI&(s-~c)] (i = 0, 1 ,  2, 3). (4.9) ds2 
Since 

(4.10) 

(Abramowitz & Stegun 1965), we must have Ci = 0 in order to match to the decaying 
solution (4.8). Then 

@,(a) = B,I+D,s+E, (i = 0, 1 , 2 , 3 ) ,  (4.11) 
where 

I(s, a4) = Jr Jr Ai [& eKi/6(u - a4 c)] du d v  (4.12) 

and by matching to (4.8) E,, = 1 ,  Do = 0, E, = 0, D, = 0, E, = 0 and D, = - 1. In 
preparation for matching inwards to r = 0(1) let 

and 
( 4 . 1 3 ~ )  
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To complete the solution we must solve (4.1) in the region r = O(l) ,  match to (4.11) 
and impose the boundary conditions ( 4 . 3 ~ )  and (4.4). We describe in detail the 
leading-order derivation and sketch the result at higher orders. At leading order (4.1) 
becomes 

-- d4$-, - o. (4.14) 
dr4 

We solve this subject to ( 4 . 3 ~ )  and match to (4.11): 

$,(4 = 1+B,I,  ( r  > 11, (4 .15~)  

$,(r) = P,r+Q,r3 ( r  < 1). (4.15b) 

Use of (4.4d) gives Qo = 0. Equation (4.4b) or ( 4 . 4 ~ )  then implies Po = 0 and finally 
(4.4a) requires B, = - I;,. Note that d2$,/dr2 = 0 so $, and $z are also cubic in r .  
After matching and imposition of the boundary conditions, we find that 

$,(r) = -I; lI;r  ( r  > 1 and r < I ) ,  ( 4 . 1 6 ~ )  

( r  > 1 ), (4.16 b)  

$,PI = Par ( r  < 11, (4 .16~)  

where B, = I ;2 ( I l - I i ) .  Finally c-, is determined by substitution of (4.16) into ( 4 . 4 ~ )  

1; (4.17) 
and is given by 

c-, = -. 

$,( r )  = - *I;, I," q2 + (B, I;  - I;, I ; )  q + B, I ,  + B, I ,  - I;,  I ,  

I ;  

The constants B, and P, could if necessary be found from (4.4a, b). 
Routine series expansion of (4.12) using (4.13) shows that c-, = 

z is a root of 
e6si/6z, where 

f ( z ) = z A i ( z ) +  Ai(g)dg-f=O. (4.18) 

It can be shown numerically that f(z) has one positive real root in 0.7 < z < 0.8 
(Abramowitz k Stegun (1965), tables 10.11 & 10.12) and an infinite number of 
negative roots. Recalling that instability occurs if c has a positive imaginary part, 
we see that we have one unstable mode and many stable modes of perturbation. 

4.2. A meandering perturbation with c = O ( a - f )  
The only difference between the formulation of the stability problem for meandering 
perturbations and that for varicose perturbations is that the boundary conditions 
of (4.3b) are applied a t  the origin rather than those of ( 4 . 3 ~ ) .  We can follow the 
analysis of $4.1 from (4.5) to (4.13) to determine the outer flows in r = O(a-') and 
in r = O(a-4).  However, the analysis takes a different turn in the region r = O(1). 

K 

The leading-order equations for $ when r = O(1) are still 

-- d4$t - 0 (i = 0, 1) .  
d.P 

(4.19) 

After imposition of the boundary conditions (4.3 b) at the origin, we have 

$, = Pt+Qtr2 ( r  < I),  (4.20 a )  

$, = Rg+AStq+qq2+ U,q3 ( r  > I ) .  (4.20 b) 

The constants R,, AS,, Ti and U, are found by matching to (4.11), and Pi, Q,, c-, and 
Bt should then be obtainable from (4.4). However, we find that U, = 0 (i = 0, 1)  and 
so (4.4d) is satisfied automatically. The system of equations is thus underspecified 
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and after completion of any given order there will be undetermined constants. A 
solution can be found by looking ahead and using equations from higher orders. 

A t  leading order we readily obtain 

y?,=1+B,I0 ( r > 1  and r < l ) ,  (4.21) 

where B, cannot be determined at  this order. At O(ai), matching to (4.11) gives 

lcll = B , I ~ q + B , I , + B , I ,  ( r  > 1 ) .  (4.22) 

At this order we have only (4.4a-c) to find B,, B,, cVl, PI and &,, and hence must 
leave two unknown constants. We note that ( 4 . 4 ~ )  reads 

(1+B,I,)p+2c-1&1 = 0 (4.23) 

and jump to O(a). From (4.1), 

(4.24) 

Substitution from (4.21)-(4.23) shows that $, is in fact also unforced and will take 
the form (4.20). Then (4 .44  gives U,  = 0, but, by matching outwards, U,  = ;B,I;. 
If B, = 0 then we cannot simultaneously satisfy (4.4b) and ( 4 . 4 ~ )  at O(ak). We 
conclude, therefore, that I: = 0, determining c-,. Returning to O(ai), we find that 

B, = - (I;  c-l + I&-,, 

Qi = @Bo 

Pl = B, Io+Bo(Il-@I;),  

( 4 . 2 5 ~ )  

(4.25 b) 

( 4 .25~)  

with B, still unknown. Careful consideration indicates that this method will generate 
higher-order solutions : (4.4b) and ( 4 . 4 ~ )  a t  O(ai13) together with (4 .44  at O ( C Z ( ~ + ~ ) / ~ )  
provide three equations for BiPl, ct-, and Qt.  Then ( 4 . 4 ~ )  at O(aa13) gives 4 in terms 
of the only remaining unknown, B,. 

For our purposes, it is sufficient to know that I;  = 0. Substituting from (4.12), we 
find that c-, = R-4 eSnilsz, where z is a root of Ai'(z) = 0. All the roots of Ai'(z) are 
negative and thus all these modes of perturbation are stable. 

4.3. Perturbations with c = O(a-') 
Pose, 

c - a-lc-, + c, + ac, E a-lc-, + c', ( 4 . 2 6 ~ )  

lcl lclo + +a21c12, (4.26b) 

and let q = r -  1 ,  t = a(r- 1)  as before. Substituting into (4.1), we obtain 

c')-+c-, a@ +2a2-+O(a3), d21cl ( 4 . 2 7 ~ )  
d2' dr2 ] dr2 

(4.27 b) 

Thus, under the assumptions (4.26), we have a region where r = O(a-') in which only 
advection of vorticity by the mean flow is important, whereas if r = O(1) there is a 
balance between diffusion and propagation of waves of vorticity . 

In  the region T = O ( a - l )  we can solve (4.276) and use homogeneity to get 

$(t) = e+. (4.28) 
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When solving (4.27~) in r = O(1) i t  is convenient to introduce constants 
A, = (-ilk-$ and A- = @ A + ,  defined so Re ( A * )  > 0. In order to be able to match 
to (4.28), the solution to (4.27~) in r > 1 must be 

$,(r) = B,+C,q+D, e-A+*. (4.29) 

where B, = 1, C, = 0. After using (4.3~) a varicose solution will satisfy 

+,(r) = E,r+ F, sinh (A-  r )  ( r  < i ) ,  (4.30) 

while a meandering solution satisfying (4.3 b) will have 

$,(r) = Go+H,  cosh (A-  r )  ( r  < 1). (4.31) 

We substitute (4.29) and (4.30) or (4.31) into (4.4) and attempt to solve for the 
unknown constants. 

In the varicose case (4.30), (4.29) and (4.4) produce 

1+D, = Eo+Fo sinhh-, 

A ,  Do = E,+A- F, CoshA-, 

PA: Do = A? F, sinh A _ ,  

-PA: Do = A\ F, CoshA. 

(4.32~) 

(4.32 b)  

(4.32~) 

(4.32d) 

A non-trivial solution for Do and F, in (4.42c, d )  would require coth A- = -P-t. This 
contradicts Re ( A _ )  > 0 and hence we must have Do = F, = 0.  Unfortunately, 
substitution of these values into (4.32a, b) leads to E, = 0 and E, = 1. The only 
conclusion possible from this contradiction is that no varicose solution satisfying the 
asymptotic expansions of (4.26) can exist. 

On the other hand the jump conditions at leading order for a meandering 
perturbation possess the solution Do = H ,  = 0, Go = 1, and we may proceed to the 
next order. Note that all the derivatives of $o are zero. 

The solutions to (4.27~) at O(a)  which satisfy the boundary conditions at the origin 
and match to (4.28) are 

$l(r) = -q+ D, e-A+* ( r  > 11, (4.33 a )  

$,(r) = G,+H,  cosh (A- r )  

It is straightforward to deduce from the interfacial jump conditions that 

( r  < 1).  (4.33 b)  

c-1 = 1 -8, (4.34) 

(4.354 D, = [( 1 -/3) A2, (1 +/Pi ~ 0 t h  A-)]-', 

(4.35 b )  

(4.35 c) 

Hence c-, is real and there is neutral stability at this order. We may understand the 
propagation of the disturbance by the following argument (see figure 2). At leading 
order, continuity of stress can only be satisfied if there is no axial perturbation flow 
inside the plume. Hence, there must be an axial flow outside the plume in such a 
direction as to cancel the discontinuity in the basic flow a t  the disturbed interfacial 
position. The vorticity associated with this axial perturbation flow has the appro- 
priate sign to induce propagation in the direction predicted by (4.34). Careful 
consideration shows that even the inclusion of the density contrast between the fluids 
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r = -a+&) 

r = a + &) 

Disturbance 
vorticity 

FIQURE 2. A mechanism of propagation in the limit a+O. The difference between the disturbed 
velocity profile (shown dashed) and the undisturbed profile (shown solid) produces vorticity which 
causes lateral motion and propagation of the disturbance. 

does not perturb c - ~  away from a real value. We must therefore proceed to the next 
order. 

The solution to (4.27a) at O(a2) that satisfies the boundary conditions at the origin 
and matches to the flow at infinity (4.28) is given by $, = $,c + $2p where 

$2c = D, e-A+ q ( r  > 1)) ( 4 . 3 6 ~ ~ )  

$,c = G, + H ,  cosh (A-  r )  ( r  < 1) )  (4.36b) 

$2p = (f‘z A+ q2+ Qz a )  e-A+ ‘ +R2 q2 (r > l ) ,  (4 .36~)  

sinhA-r+ U,r2 ( r  < I) ,  (4.36d) 
5r2 

y+2p = S2r$ sinhh- r - -  
4 

and 

(4.37) 

The four unknown constants D,, G,, H ,  and co are determined by the four interfacial 
jump conditions (4.4). In  particular, a fair amount of laborious but routine manipu- 
lation yields the following expression for co : 

(4.38) 
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0 

FIGURE 3. Contours of the leading-order term in the  imaginary par t  of the growth 
limit a+O. The flow is unstable if v, < vi. 

where 

rate in the 

(4.39 a) 

(4.39b) 

A contour map of Im(co) plotted against R and pR is given in figure 3. The 
singularity at p = 1 is a consequence of the non-commutation of the limits p+ 1 and 
a+O, and would not appear in an asymptotic expansion of c in powers of p- 1. 
Discounting the singularity, therefore, we see that the flow is unstable if vo < PcBcrit vi, 
whelne PCrit(R) deereases from about 6 at R = 0.0005 to about 0.2 at R = 500. 

5. Long-wavelength solutions at low Reynolds number 
The solutions presented in $4 all contain a region r = O(0l-l) in which advective 

effects are important. In the limit of low Reynolds number diffusion of vorticity must 
be the dominant effect throughout the flow. Consideration of ( 4 . 1 ~ )  shows that 
advection will not be important anywhere if R 4 a3 4 1 and we would therefore 
expect the expansions of 94 to break down in this limit. In  this section we derive 
an expression for c that is valid in the joint limits of R+O and a+O subject to 
R < a3. We continue to use the simplifying approximations A = a, k = 0 and m = 1. 
We pose 

$ - +o+R$-,+... , (5.1) 

(5.2) c - c,+Rc,+ ... . 
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The leading-order problem obtained from (3 .2)  and (3 .4)  is then 

where in r > 1 

and in r < 1 

(D2-a2)2$o = 0, ( 5 . 3 ~ )  

$ , - 0  as r + m ,  (5.3b)  

!bo(0) = D2$,(0) = 0 (varicose only), (5.3c) 

D!bo(0) = D3$,(0) = 0 (meanders only), ( 5 . 3 4  

[$,I? = 0, 

[c ,  D$, + 0$,] 2 = 0 ,  

[ v (co (D2+a2)$ ,+  l7"$,)]? = 0, 

iTa3 
$0 7 

[v(D2-3a2)D$ ] + 
o - -  

Cn 

D = r - l ,  v =  1, 

8= g?( r2-  l ) ,  v = p-'. 

(5 .3e)  

(5 -3 f  1 
( 5 . 3 d  

(5.3h)  

(5.4a) 

(5.4b) 

This perturbation scheme shows some similarity to the short-wavelength analysis 
of two-fluid unbounded Couette flow given by Hooper &, Boyd (1983).  However, the 
natural lengthscale imposed by the plume width means that the low-Reynolds- 
number and the short-wavelength limits are in fact distinct. 

5.1. Varicose perturbations 
Let q = r - 1 .  The solution to ( 5 . 3 ~ )  subject to the boundary conditions (5 .3b,  c )  is 

$, = (A,  aq + B,) e-aq 

$, = C,ar cosh (ar)+D, sinh (ar) 

(T > 11, ( 5 . 5 ~ )  

( r  < 1). (5 .5b)  

For brevity of notation, we write C for cosha and S for sinha. When (5.5) is 
substituted into the interfacial-jump conditions (5.3e-h), we obtain a homogeneous 
system of equations for A,, B,, C ,  and Do. This has a non-trivial solution only when 
the matrix of coefficients has zero determinant. This condition reduces to the equation 

It is routine to prove that Im c,  < 0 and that Im c, is a monotone decreasing function 
of a. Thus surface tension stabilizes all wavelengths at leading order but, as we would 
expect, long wavelengths are only weakly stabilized. We thus concern ourselves with 
the long-wavelength limit and, for simplicity, approximate S by a,  C by 1 and C S - a  
by $aJa3, and neglect higher-order terms in a. We deduce that 

1 
co x ---+ira2, 

2 a  (5.7) 

corresponding to a wave propagating in the direction of plume flow and weakly 
stabilized by surface tension. 

A t  long wavelengths and small capillary numbers the stabilizing effects of surface 
tension may be overcome by the destabilizing influence of inertia. The first effects 
of a non-zero Reynolds number may be calculated by solving (3 .2)  at O(R). is the 
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FIGURE 4. (a) In the limit R+O, the variation in the plume thickness causes a vertical perturbation 
velocity. This induces lateral interfacial motion and propagation of the disturbance downwards. 
( b )  The advection of vorticity associated with the perturbation velocities in (a) provides a 
component of vorticity out of phase with the disturbance. This leads to growth of the perturbation. 

sum of a particular integral forced by the advective effects of $o, and a complemen- 
tary solution of the same form as $o in (5.5). The four unknown constants in this 
complementary solution are determined from four inhomogeneous equations derived 
from the jump conditions at r = 1. The coefficients of the homogeneous part of these 
equations are the elements of the singular matrix of coefficients appearing at leading 
order. Thus, c1 is determined by the condition that the inhomogeneous part of these 
equations lies in the image space of this singular matrix. A large amount of algebra 
yields the result that, when a 4 1, 0: 

3 1  
c1 = - 

16as 

We can thus obtain instability if R > gra5 (provided still that R 6 as). 

following arguments. The leading-order stream function is given by 
We can understand the physical mechanisms of propagation and instability by the 

@o x A(r e-u(r-l) 1 ( r >  (5.9a) 

@o x A ( r + * V )  ( r  < 1) .  (5.9b) 

Where the plume is thicker than the mean thickness it falls more quickly and the 
perturbation velocity is downwards. Where it is thinner it falls more slowly and the 
perturbation velocity is upwards (see figure 4 a ) .  This is a simple consequence of 
the balance between buoyancy and surface stress. The variation in the vertical flux 
causes a horizontal motion that is out of phase with the interfacial displacement and 
in such a direction that the disturbance propagates downwards in agreement with 
(5.7). A t  O(R) we must take into account the advective term in the vorticity 
equation. The disturbance vorticity is concentrated outside the plume and is 
advected upwards by the mean flow. The vorticity associated with the mean flow 
is advected by the flow associated with the leading-order perturbation. Both these 
advective effects lead to a component of disturbance vorticity at O(R) that is out of 
phase with the interfacial perturbation and that has the appropriate sign to induce 
a growth of the perturbation (see figure 4b) .  This agrees with (5.8). 
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FIGURE 5. (a) In the limit R-tO, a meandering displacement of the interface and basic-flow profile 
causes a vertical perturbation velocity. (b)  The variation of the vertical perturbation velocity in 
(a) causes horizontal motion and propagation of the disturbance upwards. 

5.2. Meandering perturbation8 
The solution of ( 5 . 3 ~ )  subject to the boundary conditions (5.3b, d) is 

$, = (A,  aq + B,) e-=Q ( r  > 11, (5.10~) 

$,=C,arsinh(ar)+D,cosh(ar) ( r <  1). (5.10b) 

As in $5.1, the substitution of $, from (5.10) into the interfacial-jump conditions leads 
to linear homogeneous equations for the unknown constants A,, B,, Go and Do. The 
determinant of the matrix of coefficients must vanish for a non-trivial solution to 
exist. This implies that 

(&+b- 1 ) - + i n ~ 2 +  ( c s + ~ ) ~ I  
(5.1 1) 

co = (C2 + 82) + (CS + a) /9 + (CS - a) p- 1 . 
For long-wavelength disturbances 

(5.12) 

corresponding to a wave propagating against the direction of plume flow and 
stabilized by surface tension. We note that surface tension is much more effective 
at stabilizing meandering than varicose perturbations. Detailed analysis shows that 
this stabilizing effect cannot be overcome by the destabilizing influence of inertia 
when R 4 a3 and r = O(1). 

The leading-order stream function when a 4 1 is given by 

$, x A(1-a(r-1)) e-a(r-l) 

$, x A ( l  -bar2) 

( r  > l ) ,  

( r  < 1). 

(5.. 13 a) 

(5.13b) 

We see that a meandering displacement of the interface to r = &a+{ causes a 
perturbation flow that shifts the parabolic mean-flow profile centred at r = 0 towards 
one centred at  r = g (see figure 5a) .  The effect is to cause vortical motion at the points 
of maximum interfacial displacement and lateral flow at the points of zero 
displacement. This lateral flow is in the appropriate direction to cause propagation 
of the disturbance upwards (see figure 5b) .  This agrees with (5.12). 
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Mode Limit Growth rate Number Stability 

Varicose a+O c = O[(aR)*l 00 one unstable, rest stable 
Meander a+O c = O[(aR)-f] 00 all stable 
Varicose a+O c = O(a-1) none 
Meander a+O c - a - ' ( l - @ )  1 unstable at higher order if 

Varicose R+O, a Q 1 c - -(2a)-' 1 unstable if R > iTa5 
Meander R+O, a* 1 c - ( 2 a ) - l  1 stable 

- 

vo < B m  vi 

TABLE 1.  Classification of modes of perturbation 

6. Conclusions 
We have examined the linear stability of a steady plume of buoyant fluid, con- 

sidering throughout the situation in which the boundaries of the external fluid are 
at  a much greater distance from the plume than the wavelength of the disturbance. 
Expressions for the growth rate c as a function of the relevant dimensionless 
parameters in a variety of asymptotic limits are summarized in table 1. 

The results show that a steady line plume is always unstable to long-wavelength 
varicose disturbances. Such a plume is also unstable to long-wavelength meandering 
disturbances if the external-fluid viscosity is less than a certain multiple of the 
internal-fluid viscosity. A further varicose mode of instability exists in the limit R-tO 
when surface tension is weak. 

These results can be compared with the stability of a three-dimensional plume, 
determined experimentally by Huppert et al. (1986). They found that at low Reynolds 
numbers an axisymmetric plume seemed stable, at  higher Reynolds numbers 
long-wavelength meandering or varicose instabilities appeared and a t  large Reynolds 
numbers unsteadiness and turbulence set in. Our linear stability analysis is in only 
partial agreement with these experimental results. We have shown that a line plume 
is unstable at moderate Reynolds numbers to long-wavelength meandering and 
varicose perturbations. Such perturbations will grow to finite amplitude, and a t  
sufficiently large Reynolds numbers we would expect nonlinear effects to lead to 
turbulence. Thus far is in agreement with experiment. At low Reynolds numbers. 
however, we have found a line plume to be unstable to varicose disturbances. 
Instability at  low Reynolds numbers has been found in other Poiseuille or Couettt 
flows with a viscosity discontinuity and small surface tension (Yih 1967; Hickox 
1971 ; Hooper & Boyd 1983; Hooper 1985) and seems to be a feature of such systems. 
We would, therefore, expect the mechanisms of instability of a line plume to be 
applicable to the axisymmetric plume. This prediction of instability seems at variance 
with the experimental observations. In any practical application, however, the plume 
will rise in a container of finite vertical extent and it is necessary to consider whether 
the growth rate is large enough for the instability to become apparent during the rise 
time of the plume. Further work is needed to decide whether the experimentally 
determined stability of an axisymmetric plume is simply a eonsequence of the use 
of apparatus with a finite depth. 

It is clearly of interest to seek analogous analytical results for a three-dimensional 
axisymmetric plume. The undisturbed flow and axisymmetric plume radius are easily 
calculated. In contrast with the case of a line plume, the plume radius is unaltered 
at leading order by the presence or absence of a return flow in the outer fluid. The 
stability analysis of such a flow is difficult ; complications arise because the external 
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velocity profile is logarithmic rather than linear and because separation into 
cylindrical polar coordinates introduces differential operators with non-constant 
coefficients. We have been unable to complete a solution to this problem, though we 
expect the mechanisms of instability outlined in this paper to carry over to the 
axisymmetric case. 

The complexity of the analysis makes it difficult to identify the causes of 
instability. Our results depend only weakly on the density ratio between the fluids, 
indicating that the fundamental causes of instability must be the viscosity contrast 
between the fluids and the change in profile of the mean flow across the interface. 
In the limit R+O we showed that the perturbation velocity is such as to adjust the 
mean-flow profile to that appropriate to the local plume thickness and location. We 
then argued that the propagation and growth of such disturbances can be explained 
in terms of this perturbation velocity. In the limit a+O we showed that the 
propagation of one mode depends on the difference in shear rates across the interface 
and hence on the viscosity difference between the fluids. The scaling of the remaining 
modes of perturbation in powers of at suggests that they may be related to general 
shear instabilities. 

From a mathematical viewpoint, the results display some interesting and surprising 
features. A t  long wavelengths we have found a variety of modes of perturbation with 
values of c that can be O(a-') or O(a-$). The number of such modes can be infinite, 
finite or zero, depending on the limit taken, indicating that the eigenvalue problem 
determining c is subject to extensive bifurcation. In the limit a+O, R = 0(1) there 
are two completely different meandering solutions in which the balances between the 
physical processes of diffusion, advection and propagation occur in different regions. 

All these factors indicate that the dispersion relation, c = c(a, R, /3, m, I), is highly 
complicated and the existence of even more modes should not be ruled out. Finally, 
we would like to comment that the methods of this paper are applicable to other 
two-fluid flows with distant boundaries. In such cases we would expect similarly 
varied and exotic behaviour. Recent studies of Couette flow (Hooper & Boyd 1983; 
Hooper 1986) lend support to this view. 
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